Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Abstract In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.more » « less
-
Abstract High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments.more » « less
An official website of the United States government

Full Text Available